Nanoscale III-V CMOS

J. A. del Alamo

Microsystems Technology Laboratories Massachusetts Institute of Technology

Compound Semiconductor Week 2016

Toyama, Japan; June 26-30, 2016

Acknowledgements:

- Students and collaborators: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao
- Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung
- Labs at MIT: MTL, EBL

Moore's Law at 50: the end in sight?

THE WALL STREET JOURNAL Moore's Law Is Showing Its Age

The prediction about squeezing transistors onto silicon has been revised again.

Moore's Law is dead. Long live Moore's Law.

Moore's Law

Moore's Law = exponential increase in transistor density

Moore's Law

How far can Si support Moore's Law?

Transistor scaling \rightarrow Voltage scaling \rightarrow Performance suffers

Supply voltage: Transistor current density: 6 10 5 Supply voltage (V) l₀n/W (mA/µm) 1 ~20%/gen 3 ~37%/gen 2 0.1 1 Intel microprocessors Intel microprocessors 0 0.01 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020 Year of introduction Year of introduction

Goals:

- Reduced footprint with moderate short-channel effects
- High performance at low voltage

Moore's Law: it's all about MOSFET scaling

1. New device structures with improved scalability:

2. New materials with improved transport characteristics:
n-channel: Si → Strained Si → SiGe → InGaAs
p-channel: Si → Strained Si → SiGe → Ge → InGaSb

Contents

1. Planar InGaAs MOSFET

2. InGaAs FinFETs

3. Gate-All-Around Nanowire MOSFET

4. InGaSb FinFETs

1. Self-aligned Planar InGaAs MOSFETs

Lin, IEDM 2012, 2013, 2014

Sun, IEDM 2013, 2014

Lee, EDL 2014; Huang, IEDM 2014

Self-aligned Planar InGaAs MOSFETs @ MIT

Lin, IEDM 2012, 2013, 2014

Recess-gate process:

- CMOS-compatible
- Refractory ohmic contacts
- Extensive use of RIE

Highest performance InGaAs MOSFET

- Channel: In_{0.7}Ga_{0.3}As/InAs/In_{0.7}Ga_{0.3}As
- Gate oxide: HfO_2 (2.5 nm, EOT~ 0.5 nm)

L_g=70 nm:

- Record $g_{m,max}$ = 3.45 mS/mm at V_{ds} = 0.5 V
- $R_{on} = 190 \Omega.mm$

Lin, EDL 2016

Excess OFF-state current

OFF-state current enhanced with V_{ds} → Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013

11

Excess OFF-state current

2. InGaAs FinFETs

Intel Si Trigate MOSFETs

22 nm Process

14 nm Process

Bottom-up InGaAs FinFETs

Top-down InGaAs FinFETs

Kim, IEDM 2013

- Narrowest InGaAs FinFET fin: W_f=15 nm
- Best channel aspect ratio of InGaAs FinFET: 1.8
- g_m much lower than planar InGaAs MOSFETs

InGaAs FinFETs @ MIT

Key enabling technologies: BCl₃/SiCl₄/Ar RIE + digital etch

- Sub-10 nm fin width
- Aspect ratio > 20
- Vertical sidewalls

Vardi, DRC 2014, EDL 2015, IEDM 2015

InGaAs FinFETs @ MIT

Vardi, VLSI Tech 2016

- CMOS compatible process
- Mo contact-first process
- Fin etch mask left in place → <u>double-gate MOSFET</u>

InGaAs FinFETs @ MIT

Most aggressively scaled FinFET

 L_g =20 nm, W_f =7 nm, H_c =40 nm (AR=5.7):

At V_{DS} =0.5 V:

- g_m=170 μS/μm
- $R_{on}=4 k\Omega.\mu m$

Vardi, VLSI Tech 2016

• S_{sat}=130 mV/dec

InGaAs FinFETs: g_m benchmarking

g_m normalized by width of gate periphery:

- First InGaAs FinFETs with W_f<10 nm
- Severe g_m degradation for thin $W_f \rightarrow$ sidewall roughness?

Latest results

- Scaled gate oxide: HfO₂ with EOT=0.6 nm
- Attention to line-edge roughness

Record results for InGaAs FinFETs with $W_f < 25$ nm

InGaAs FinFETs: g_m benchmarking

g_m normalized by fin width (FOM for density):

- Doubled g_m over earlier InGaAs FinFETs
- Still far below Si FinFETs → poor sidewall charge control

Impact of fin width on V_T

InGaAs doped-channel FinFETs: 50 nm thick, N_D~10¹⁸ cm⁻³

- Strong V_T sensitivity for $W_f < 10$ nm; much worse than Si
- Due to quantum effects

Vardi, IEDM 2015

3. Nanowire InGaAs MOSFETs

Tanaka, APEX 2010

Persson, EDL 2012 Tomioka, Nature 2012

- Nanowire MOSFET: ultimate scalable transistor
- Vertical NW: uncouples footprint scaling from L_g and L_c scaling

InGaAs Vertical Nanowires on Si by direct growth

Vapor-Solid-Liquid (VLS) Technique

Selective-Area Epitaxy

<u>5 nm</u>Si

InAs NWs on Si by SAE

InAs

um

Björk, JCG 2012

Riel, MRS Bull 2014

InGaAs VNW MOSFETs by top-down approach @ MIT

Key enabling technologies:

- RIE = $BCI_3/SiCI_4/Ar$ chemistry
- Digital Etch (DE) = •

 O_2 plasma oxidation H_2SO_4 oxide removal P_2

- Sub-20 nm NW diameter
- Aspect ratio > 10 •
- Smooth sidewalls

Zhao, EDL 2014

NW-MOSFET I-V characteristics: D=40 nm

Single nanowire MOSFET:

- L_{ch}= 80 nm
- $3 \text{ nm Al}_2\text{O}_3 \text{ (EOT = 1.5 nm)}$
- $g_{m,pk}$ =620 µS/µm @ V_{DS}=0.5 V
- S_{sat}=110 mV/dec @ V_{DS}=0.5 V
- Approaches best bottom-up devices [Berg, IEDM 2015]

Self-aligned Bottom-up InAs NW-MOSFETs

Berg, IEDM 2015

VNW MOSFET array:

- VLS growth
- D=28 nm
- L_{ch}= 190 nm
- $g_{m,pk}$ =850 µS/µm @ V_{DS}=0.5 V
- S_{sat} =154 mV/dec @ V_{DS}=0.5 V

How are we doing in terms of short-channel effects?

4. InGaSb p-type MOSFETs

Planar InGaSb MOSFET demonstrations:

Nainani, IEDM 2010

Takei, Nano Lett. 2012

InGaSb p-type FinFETs @ MIT

Key enabling technology:

- BCI₃/N₂ RIE
- [digital etch under development]

15 nm fins, AR>13

20 nm fins, 20 nm spacing

- Smallest W_f = 15 nm
- Aspect ratio >10
- Fin angle > 85°
- Dense fin patterns

Lu, IEDM 2015

InGaSb p-type FinFETs

- Fin etch mask left in place → <u>double-gate MOSFET</u>
- Channel: 10 nm In_{0.27}Ga_{0.73}Sb (compressively strained)
- Gate oxide: 4 nm Al_2O_3 (EOT=1.8 nm)

InGaSb FinFET I-V characteristics

- $L_a = 100 \text{ nm}, W_f = 30 \text{ nm} (AR=0.33)$
- Normalized by conducting gate periphery

- First InGaSb FinFET
- Peak g_m approaches best InGaSb planar MOSFETs
- Poor turn off

Lu, IEDM 2015

Co-integration of SiGe p-MOSFETs and InGaAs MOSFETs on SOI

Conclusions

- 1. Great recent progress on planar, fin and nanowire InGaAs MOSFETs
- 2. Planar and multigate InGaAs MOSFETs exhibit nearly ideal electrostatic scaling behavior but poor D_{it}
- 3. Device performance still lacking for multigate designs
- 4. P-type InGaSb MOSFETs in their infancy
- 5. Many issues to work out:

sub-10 nm fin/nanowire fabrication, self-aligned contacts, device asymmetry, introduction of mechanical stress, V_T control, sidewall roughness, device variability, BTBT and parasitic HBT gain, trapping, self-heating, reliability, NW survivability, co-integration on n- and p-channel devices on Si, ...

A lot of work ahead but... exciting future for III-V electronics

